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We investigated the Talbot effect in an anti-parity-time (PT) symmetric synthetic photonic lattice composed of two coupled
fiber loops. We calculated the band structures and found that with an increase in the gain-loss parameter, the band tran-
sitions from a real spectrum to a complex spectrum. We study the influence of phase in the Hermitian operator on the Talbot
effect, and the Talbot effect disappears when the period of the input field is N> 8. Further study shows that the variation of
Talbot distance can also be modulated by non-Hermitian coefficients of gain and loss. This work may find significant appli-
cations in pulse repetition-rate multiplication, temporal invisibility, and tunable intensity amplifiers.
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1. Introduction

The Talbot effect, initially discovered by H. F. Talbot in
1836[1], refers to the self-replication phenomenon of periodic
structures[2] under quasi-monochromatic coherent light illumi-
nation, which directly arises from near-field Fresnel diffrac-
tion[3]. The Talbot distance ZT is defined as the position at
which waves periodically reproduce themselves along the propa-
gation direction[4]. In addition to optics, this effect has also been
widely studied and applied in condensed matter[5,6], quantum
revivals[7,8], X-ray[9,10], plasmonic[11,12], electron[13,14], prime-
number decomposition[15], and so on. Currently, research on
the optical Talbot effect has expanded from the spatial
domain[16–18] to the temporal domain[19–21], from linear to
nonlinear[22], and from continuous media to discrete sys-
tems[16–18,23]. Unlike in continuous media, the occurrence of
the Talbot effect in discrete media requires the pattern period
to meet specific conditions[4,18], whether in one-dimension[24]

or two-dimensions[25].
The non-Hermitian Hamiltonians have completely real spec-

tra if they obey parity-time (PT) symmetry, which was proved by
Bender and their colleagues[26,27]. The anti-PT symmetry
demands that the refractive index n�x� = nR�x� � inI�x� should
satisfy n�−x� = −n� �x�[28,29]. This means that the real part
nR�x�, the phase distribution, should be an odd function, while

the imaginary part nI�x�, the gain/loss, should be an even func-
tion. PT-symmetry in optics was initially observed in the context
of two coupled waveguides[30,31]. However, experimental
achievement on an anti-PT symmetric large-scale lattice is
highly limited. To overcome limitations, recently, there has been
a generalization of the lattice concept from real space to syn-
thetic dimensions, including temporal and spectral lattices[32,33].
By representing a temporal grid lattice, the evolution of pulses in
two coupled fiber rings can be analogous to the dynamics of light
beams in a spatial grid lattice[19]. Through temporal control of
gain and loss within the lattice structure[34,35], researchers have,
to the best of their knowledge, successfully achieved experimen-
tal realization of PT-symmetry in large-scale lattices for the first
time[36].
In this study, we employ an anti-PT symmetric synthetic pho-

tonic lattice composed of two coupled fiber loops. Electro-optic
and acousto-optic modulators are utilized to adjust the phase
distribution as well as gain and loss coefficients of the system.
First, the band structure is calculated, followed by a theoretical
analysis of the conditions for generating the Talbot effect and the
calculation method of the Talbot distance. Additionally, simu-
lations are conducted under two scenarios, Hermitian phase
modulation and non-Hermitian modulation, to investigate the
Talbot self-imaging phenomenon. The goal is to explore the
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influence of these different modulation methods on the Talbot
effect and the characteristics of self-imaging.

2. Model and Theory

The anti-PT symmetric synthetic photonic lattice is formed by
two coupled fiber loops, which are shown in Fig. 1(a). A 50:50
directional coupler connects two fiber rings with a length differ-
ence ΔL[19,29]. Once the coupler receives the initial light pulse
injected into the long loop, it generates two new pulses that flow
into each loop. After completing one round trip, the pulses in the
short loop return to the coupler first, and subsequently propa-
gate in the long loop. As a result, the two pulse trains interfere
with each other through the coupler[20]. Like the dynamics of
beams in spatial grids, the pulse train undergoes incremental
evolution as the number of round trips increases. The equivalent
lattice in the time domain is shown in Fig. 1(b), where m is the
number of pulses entering the coupler, and n is the position of
the pulse in the lattice.
As mentioned in the introduction section, to guarantee the

odd symmetry of the real part, the phase modulator needs to
be adjusted so that φn satisfies

φn =
�
−φ, n = 2k
�φ, n = 2k� 1

, �1�

where φ is the amplitude of phase modulation, k ∈ Z. The dis-
tributions of φn, gain, and loss are shown in Fig. 1(c).
Similarly, to ensure that the imaginary part is an even func-

tion, the acousto-optic modulator needs to be adjusted, and the
gain (G > 0) and loss (γ < 0) are set as8>>><
>>>:

γp = γ, γq = G, for mod�n� 3; 4� = 0

γp = γ, γq = γ, for mod�n� 3; 4� = 1

γp = G, γq = γ, for mod�n� 3; 4� = 2

γp = G, γq = G: otherwise

: �2�

Assuming that the amplitudes of the pulses in the short and long
loops are Um

n and Dm
n , respectively, the pulse iteration equation

governing the dynamics in the anti-PT symmetric synthetic
photonic lattice can be expressed as(

Um�1
n = 1��

2
p eγp�Um

n�1 � iDm
n�1�e−iφn

Dm�1
n = 1��

2
p eγq�Dm

n−1 � iUm
n−1�

: �3�

To better study the optical pulse transmission characteristics
in the synthesized photonic lattice, we use eikneiβm to solve
the dispersion relation of the system. The Bloch mode is
�Um

n ,Dm
n �T = �U ,D�Teikneiβm, where �U ,D�T is the periodic

Bloch function, k and β represent the transverse Bloch momen-
tum and longitudinal propagation constant, respectively[36,37].
By inserting Eqs. (1) and (2) and the Bloch mode �Um

n ,Dm
n �T=

�U ,D�Teikneiβm into Eq. (3), we can obtain the dispersion
relation

cos�4k� = 2� 4 cos�4β� � cos�2φ�
� 8 cos�2β� cos φ cosh�2G� � 2 cosh�4G�: (4)

The band structure can be manipulated by adjusting the wave
vector k, the phase φ, and the gain G (loss γ). For G = 0, Eq. (4)
becomes cos�4k�=4�4 cos�4β��cos�2φ��8 cos�2β�cos�φ�.
The band structures with different values of φ have been
investigated[29].
Next, as φ = π=2, the dispersion relationship is simplified as

cos�4k� = 1� 4 cos�4β� � 2 cosh�4G�. Figure 2 illustrates the
band structures with various gain G. In Fig. 2(a), the band struc-
tures become entirely real and exhibit anomalies. In Figs. 2(b)–
2(e), the bands exhibit both real and imaginary parts. However,
in Fig. 2(f), the bands become entirely imaginary.
Considering the essential prerequisites for the occurrence of

the Talbot effect in the synthetic photonic lattice, we assume that
the input field has the period N in the time domain grid. Due to
transverse discreteness, N is an integer[19]. Therefore, the period
of the incident pulse train in the coupling loop is NΔT . To sat-
isfy the periodic boundary condition, the Bloch momentum is
kl = 2πl=M, where M = N=4 and l = 0, 1, 2, : : : ,M − 1. The
propagation constant corresponding to the Bloch momentum
kl is expressed as βj,l, where j is the band index and is equal

Fig. 1. Schematic of anti-PT symmetric synthetic photonic lattice. (a) Two
coupling fiber loops with a length difference and (b) corresponding temporal
mesh lattice with anti-PT symmetry. (c) Distribution of the phase, gain, and
loss.
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to 1, 2, 3, 4, 5, 6, 7, and 8. The propagation constant at the fourth
band is β4,l = 1

4 arccos�14 �−1� cos�4kl� − 2 cosh�4G���.
The Bloch superposition is used to describe the evolution of

the field,

�
Um

n

Dm
n

�
=
X8
j=1

XM−1

l=0

cj,l

�
Uj,l

Dj,l

�
exp�ikln� exp�iβj,lm�: (5)

Recovery can occur only when βj,l satisfies λj,lβj,l=2 = 2μj,lπ,
where λj,l is the recovery distance, and μj,l is a nonzero integer.
Since the time-domain grid is discrete in the propagation direc-
tion and λj,l is an integer, βj,l should be a rational multiple of
π[19]. Therefore, the Talbot distance is ZT = LCM�λ1,0, λ1,1, : : : ,
λ1,M , λ2,0, : : : , λ8,M�, where LCM is the least common multiple.

3. Results and Discussion

3.1. Talbot effect of Hermitian phase modulation

First, we study the influence of the phase of the Hermitian oper-
ator on the Talbot effect. For N = 4, the gain factor takes a value
of G = 0. Considering the periodic boundary conditions with
k0 = 0, the propagation constant is β4,0= 1

2arccos
�
1
2�1−cosφ��,

and the Talbot effect occurs when the mode of β4,0 can be repli-
cated during propagation. Assuming efficient recovery of the
β4,0 mode, we can express β4,0 as pπ=q, where p and q are rela-
tively prime integers.
For odd p and q, the modal recovery distance for β4,0 is

λj,l = 4q. For G = 0, φ = 0, and β4,0 = π=4, according to the sym-
metry of the bands, the propagation constants are β1,0 = 3π=4,
β2,0 = π=2, and β3,0 = π=2. The recovery distances are λ1,0 = 16,
λ2,0 = 8, λ3,0 = 8, and λ4,0 = 16. Thus, the Talbot distance is
ZT = 16. In Fig. 3(a1), the evolution of the pulse intensity is
the Talbot effect plot, where the pulse train achieves complete
recovery every 16 steps. At m = 8, the intensity distribution is
the same as the initial distribution atm = 0, which only accumu-
lates a π phase delay. For φ = π=2, according to the symmetry of
the bands, the corresponding propagation constants of the

bands are β1,0 = 5π=6, β2,0 = 2π=3, β3,0 = π=3, and β4,0 = π=6.
The recovery distances are λ1,0 = 24, λ2,0 = 12, λ3,0 = 12, and
λ4,0 = 24. Thus, the Talbot distance is ZT = 24. The correspond-
ing Talbot diagram is presented in Fig. 3(b1). For N = 8 and
φ = π=2, the Bloch momentums are k0 = 0 and k1 = π, and
the propagation constants of the fourth band are

β4,0 =
1
4
arccos

�
−
1
2
cosh�4G�

�
,

β4,1 =
1
4
arccos

�
−
1
2
cosh�4G�

�
: (6)

To support recovery, β4,0 and β4,1 are both in the form of
pπ=q. The Talbot effect occurs only when G equals zero, and
the Talbot distance is ZT = 24, as shown in Fig. 3(c1). Due to the
periodic incidence conditions and transverse discreteness, the
set of N should be restricted to f4, 8, 12, : : : , 2MLg, where ML

is the longest transmission distance. ForN > 8, the Talbot effect
does not occur. We use the case of N = 12 as an example
for illustration. For N = 12, the corresponding Bloch momen-
tum is k1 = 2π=3, and the propagation constant is β4,1 =
1
4 arccos�− 7

8� and is no longer rational multiples of π.
Consequently, the condition required for the Talbot effect, as
illustrated in Fig. 3(d1), is not satisfied, the propagation image
along the propagation direction does not exhibit periodic recov-
ery, and the energy shows irregular oscillation.
On the other hand, the Talbot distance can be manipulated by

applying linear phase modulation to the incident pulse train.We
denote the interval between adjacent pulse phase shifts as φ0. In
Fig. 4, the input field of the temporal grid also has an initial
momentum φ0, which causes the Bloch momentum to become
kl = 2πl=M � φ0. For N = 4, the fourth band with the corre-
sponding transmission constant is β4,0 = 1

4 arccos�14 �−1�
cos�4φ0� − 2 cosh�4G���. The Talbot effect exists only when
β4,0 is a rational multiple of π, and we express β4,0 as aπ=b, where
a and b are positive integers of relative prime numbers. Since
−π < φ0 < π and 0 ≤ G < 0.33, the range of values for β4,0 is

Fig. 2. Band structures for G = 0, G = 0.1, G = 0.2, G = 0.3, G = 0.327, and
G = 0.33, respectively. φ = π/2. The blue line represents the real part of
the band, and the red line represents the imaginary part of the band.

Fig. 3. (a1), (b1) The pulse intensity evolution in the long loop is shown for
φ = 0 and φ = 0.5π, respectively. The input period is N = 4. (c1), (d1) The pulse
intensity evolution in the long loop is shown for N = 8 and N = 12 with
φ = 0. The green dotted line is the location of the Talbot images.
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�π=4, π=3�. b should be at least 3, and the corresponding Talbot
distance is ZT = 12. The set of Talbot distances is denoted by
f12, 16, 20, : : : , 4b, : : : ,MLg. For G = 0, when φ0 takes the val-
ues of 0.36π and 0.46π, it corresponds to ZT = 28 and ZT = 16,
respectively. ForG = 0.21, when φ0 takes the values of 0.15π and
0.5π, it corresponds to ZT = 28 and ZT = 36, respectively. The
corresponding Talbot images are depicted in Figs. 4(a1)–4(d1).

3.2. Non-Hermitian modulated Talbot effect

The Talbot effect can also be observed by modifying the
non-Hermitian coefficients of gain and loss. For N = 4
and φ = 0, the fourth band propagation constant is β4,0 =

arccos
�����������������������������������������������������������������������������������������������������������
1
2 −

cosh �G�2
4 − sinh �G�2

4 � 1
4

�����������������������������������������������������
1 − 4 cosh �G�2 sinh �G�2

pq
.

When the gain coefficients are G = 0.29 and G = 0.35, respec-
tively, the propagation constants of the fourth band are β4,0 =
3π=8 and β4,0 = 3π=10. The corresponding Talbot distance is
ZT = 32 and ZT = 40, and the Talbot images are shown in
Figs. 5(a1) and 5(b1).
Then, we investigated the case where N equals 4 and φ equals

π. We found that when the gain-loss coefficient and the input
pulse period are identical, the Talbot effect and the amplitude
of energy remain consistent for the two initial phases of φ = 0
and φ = π.
For N = 4 and φ = π=2, according to Fig. 2, the first and sec-

ond bands are symmetrical with respect to β = 3π=4, the third
band is symmetrical with the fourth band β = π=4, and the
first (second) band is symmetrical with the fourth (third) band
about β = π=2. The fourth band propagation coefficient is
β4,0 = 1

4 arccos�− 1
2 cosh�4G��. The Talbot effect occurs when

β4,0 is a rational multiple of π, expressed as pπ=q. In this case,
the Talbot distance can be calculated as 4q. Considering that
the gain-loss factor falls within the range of 0 ≤ G < 0.33, the
propagation constant β4,0 is in the range of π=8 to π=4, with
q being at least 5. Thus, the Talbot distance falls within the range
f20, 24, 28, : : : , 4q, : : : ,MLg. Accompanying the energy oscilla-
tions during Talbot imaging, for G = 0.25, the propagation con-
stant of the fourth band is β4,0 = π=5. Consequently, the

corresponding Talbot distance is ZT = 20, which is illustrated
in Fig. 5(c1). For G = 0.31, the propagation constant of the
fourth band is β4,0 = 2π=9, corresponding to the Talbot distance
ZT = 36, as shown in Fig. 5(d1). From Figs. 5(c1) and 5(d1), the
amplitude of energy oscillation increases as the gain-loss factor
augments. For G ≥ 0.33, the band structure becomes entirely
imaginary; as illustrated in Fig. 2(f), the input field distribution
cannot be recovered due to varying degrees of amplification or
attenuation experienced by these modes. Therefore, when the
included modes are excited in the purely imaginary region of
the band structure, the Talbot effect does not occur. We
attempted to utilize the enumeration method to detect the pres-
ence of the Talbot effect for N > 4. However, the Talbot effect
does not occur.
The influence of parameters φ and γ on the energy bands is

depicted in Fig. 6. When above the curve, all eigenvalues of the

Fig. 4. Input pulse period N = 4. (a1), (b1) Talbot carpets for φ0 = 0.36π and
φ0 = 0.46π. G = 0. (c1), (d1) Talbot carpets for φ0 = 0.15π and φ0 = 0.5π.
G = 0.21.

Fig. 5. (a1), (b1) Talbot carpets for G= 0.29 and G= 0.35. φ= 0. (c1), (d1) Talbot
carpets for G= 0.25 and G= 0.31. φ= π/2. (e1), (f1) Talbot carpets for G= 0.29
and G = 0.35. φ = π.

Fig. 6. The curve representing the anti-PT symmetry breaking threshold in a
two-dimensional parameter space of φ and γ.
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system are completely imaginary. When on the curve, symmetry
breaking occurs. Below the line, the eigenvalues of the system are
complex, representing a complex spectrum with both real and
imaginary components. It is evident that the curve exhibits sym-
metry with respect to the φ = π=2 axis.

4. Conclusion

In summary, we constructed an anti-PT symmetric synthetic
photonic lattice using two coupled fiber loops. We presented
the corresponding equivalent lattice diagram and derived the
pulse amplitude expression for light pulses in the double loops.
Then, we obtained the dispersion relation of the system using
discrete plane wave solutions and plotted the band structure
by varying phase values and gain-loss coefficients. Furthermore,
we analyzed and studied the Talbot effect in the anti-PT sym-
metric synthetic photonic lattice under both Hermitian and
non-Hermitian phase modulation. The research revealed that
when the input period is N = 2, 4, 6, 8, the Talbot distance can
be flexibly controlled by changing the gain and loss factors or
linearly modulating the input pulse sequence. Additionally, at
φ = π=2, when the gain-loss factor is greater than or equal to
0.33, the Talbot effect disappears. If the pulse input period, gain,
and loss coefficients are the same, the band structures corre-
sponding to the pulse phases φ = 0 and φ = π exhibit the same
patterns, resulting in the same Talbot effect and associated
energy oscillations. This work may find promising applications
in pulse repetition-rate multiplication, temporal cloaking, and
tunable intensity amplifiers.
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